Eigenvalue spectra of modular networks.
نویسنده
چکیده
A large variety of dynamical processes that take place on networks can be expressed in terms of the spectral properties of some linear operator which reflects how the dynamical rules depend on the network topology. Often, such spectral features are theoretically obtained by considering only local node properties, such as degree distributions. Many networks, however, possess large-scale modular structures that can drastically influence their spectral characteristics and which are neglected in such simplified descriptions. Here, we obtain in a unified fashion the spectrum of a large family of operators, including the adjacency, Laplacian, and normalized Laplacian matrices, for networks with generic modular structure, in the limit of large degrees. We focus on the conditions necessary for the merging of the isolated eigenvalues with the continuous band of the spectrum, after which the planted modular structure can no longer be easily detected by spectral methods. This is a crucial transition point which determines when a modular structure is strong enough to affect a given dynamical process. We show that this transition happens in general at different points for the different matrices, and hence the detectability threshold can vary significantly, depending on the operator chosen. Equivalently, the sensitivity to the modular structure of the different dynamical processes associated with each matrix will be different, given the same large-scale structure present in the network. Furthermore, we show that, with the exception of the Laplacian matrix, the different transitions coalesce into the same point for the special case where the modules are homogeneous but separate otherwise.
منابع مشابه
The Spectra of Manhattan Street Networks
The multidimensional Manhattan street networks constitute a family of digraphs with many interesting properties, such as vertex symmetry (in fact they are Cayley digraphs), easy routing, Hamiltonicity, and modular structure. From the known structural properties of these digraphs, we determine their spectra, which always contain the spectra of hypercubes. In particular, in the standard (two-dime...
متن کاملSpectral Properties of Directed Random Networks with Modular Structure
We study spectra of directed networks with inhibitory and excitatory couplings. We investigate in particular eigenvector localization properties of various model networks for different values of correlation among their entries. Spectra of random networks with completely uncorrelated entries show a circular distribution with delocalized eigenvectors, whereas networks with correlated entries have...
متن کاملA Study on Relationship between Modularity and Diffusion Dynamics in Networks from Spectral Analysis Perspective
Modular structure is a typical structure that is observed in most of real networks. Diffusion dynamics in network is getting much attention because of dramatic increasing of the data flows via the www. The diffusion dynamics in network have been well analysed as probabilistic process, but the proposed frameworks still shows the difference from the real observations. In this paper, we analysed s...
متن کاملEigenvalue spectra of random matrices for neural networks.
The dynamics of neural networks is influenced strongly by the spectrum of eigenvalues of the matrix describing their synaptic connectivity. In large networks, elements of the synaptic connectivity matrix can be chosen randomly from appropriate distributions, making results from random matrix theory highly relevant. Unfortunately, classic results on the eigenvalue spectra of random matrices do n...
متن کاملEigenvalue spectra of asymmetric random matrices for multicomponent neural networks.
This paper focuses on large neural networks whose synaptic connectivity matrices are randomly chosen from certain random matrix ensembles. The dynamics of these networks can be characterized by the eigenvalue spectra of their connectivity matrices. In reality, neurons in a network do not necessarily behave in a similar way, but may belong to several different categories. The first study of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 111 9 شماره
صفحات -
تاریخ انتشار 2013